Food Additive | Definition, Types, Uses, & Facts

Food additive, any of various chemical substances added to foods to produce specific desirable effects. Additives such as salt, spices, and sulfites have been used since ancient times to preserve foods and make them more palatable. With the increased processing of foods in the 20th century, there came a need for both the greater use of and new types of food additives. Many modern products, such as low-calorie, snack, and ready-to-eat convenience foods, would not be possible without food additives.

There are four general categories of food additives: nutritional additives, processing agents, preservatives, and sensory agents. These are not strict classifications, as many additives fall into more than one category. For more information on additives, see emulsifier; food colouring; nutritional supplement; and preservative.

Nutritional Additives

Nutritional additives are used for the purpose of restoring nutrients lost or degraded during production, fortifying or enriching certain foods in order to correct dietary deficiencies, or adding nutrients to food substitutes. The fortification of foods began in 1924 when iodine was added to table salt for the prevention of goitre. Vitamins are commonly added to many foods in order to enrich their nutritional value. For example, vitamins A and D are added to dairy and cereal products, several of the B vitamins are added to flour, cereals, baked goods, and pasta, and vitamin C is added to fruit beverages, cereals, dairy products, and confectioneries. Other nutritional additives include the essential fatty acid linoleic acid, minerals such as calcium and iron, and dietary fibre.Skip Ad

Processing Agents

A number of agents are added to foods in order to aid in processing or to maintain the desired consistency of the product.Get exclusive access to content from our 1768 First Edition with your subscription.Subscribe today

Emulsifiers are used to maintain a uniform dispersion of one liquid in another, such as oil in water. The basic structure of an emulsifying agent includes a hydrophobic portion, usually a long-chain fatty acid, and a hydrophilic portion that may be either charged or uncharged. The hydrophobic portion of the emulsifier dissolves in the oil phase, and the hydrophilic portion dissolves in the aqueous phase, forming a dispersion of small oil droplets. Emulsifiers thus form and stabilize oil-in-water emulsions (e.g., mayonnaise), uniformly disperse oil-soluble flavour compounds throughout a product, prevent large ice crystal formation in frozen products (e.g., ice cream), and improve the volume, uniformity, and fineness of baked products.

Stabilizers and thickeners have many functions in foods. Most stabilizing and thickening agents are polysaccharides, such as starches or gums, or proteins, such as gelatin. The primary function of these compounds is to act as thickening or gelling agents that increase the viscosity of the final product. These agents stabilize emulsions, either by adsorbing to the outer surface of oil droplets or by increasing the viscosity of the water phase. Thus, they prevent the coalescence of the oil droplets, promoting the separation of the oil phase from the aqueous phase (i.e., creaming). The formation and stabilization of foam in a food product occurs by a similar mechanism, except that the oil phase is replaced by a gas phase. The compounds also act to inhibit the formation of ice or sugar crystals in foods and can be used to encapsulate flavour compounds.

Chelating, or sequestering, agents protect food products from many enzymatic reactions that promote deterioration during processing and storage. These agents bind to many of the minerals that are present in food (e.g., calcium and magnesium) and are required as cofactors for the activity of certain enzymes.


Food preservatives are classified into two main groups: antioxidants and antimicrobials. Antioxidants are compounds that delay or prevent the deterioration of foods by oxidative mechanisms. Antimicrobial agents inhibit the growth of spoilage and pathogenic microorganisms in food.


The oxidation of food products involves the addition of an oxygen atom to or the removal of a hydrogen atom from the different chemical molecules found in food. Two principal types of oxidation that contribute to food deterioration are autoxidation of unsaturated fatty acids (i.e., those containing one or more double bonds between the carbon atoms of the hydrocarbon chain) and enzyme-catalyzed oxidation.

The autoxidation of unsaturated fatty acids involves a reaction between the carbon-carbon double bonds and molecular oxygen (O2). The products of autoxidation, called free radicals, are highly reactive, producing compounds that cause the off-flavours and off-odours characteristic of oxidative rancidity. Antioxidants that react with the free radicals (called free radical scavengers) can slow the rate of autoxidation. These antioxidants include the naturally occurring tocopherols (vitamin E derivatives) and the synthetic compounds butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and tertiary butylhydroquinone (TBHQ).

Specific enzymes may also carry out the oxidation of many food molecules. The products of these oxidation reactions may lead to quality changes in the food. For example, enzymes called phenolases catalyze the oxidation of certain molecules (e.g., the amino acid tyrosine) when fruits and vegetables, such as apples, bananas, and potatoes, are cut or bruised. The product of these oxidation reactions, collectively known as enzymatic browning, is a dark pigment called melanin. Antioxidants that inhibit enzyme-catalyzed oxidation include agents that bind free oxygen (i.e., reducing agents), such as ascorbic acid (vitamin C), and agents that inactivate the enzymes, such as citric acid and sulfites.


Antimicrobials are most often used with other preservation techniques, such as refrigeration, in order to inhibit the growth of spoilage and pathogenic microorganisms. Sodium chloride (NaCl), or common salt, is probably the oldest known antimicrobial agent. Organic acids, including acetic, benzoic, propionic, and sorbic acids, are used against microorganisms in products with a low pH. Nitrates and nitrites are used to inhibit the bacterium Clostridium botulinum in cured meat products (e.g., ham and bacon). Sulfur dioxide and sulfites are used to control the growth of spoilage microorganisms in dried fruits, fruit juices, and wines. Nisin and natamycin are preservatives produced by microorganisms. Nisin inhibits the growth of some bacteria, while natamycin is active against molds and yeasts.

Sensory Agents


Colour is an extremely important sensory characteristic of foods; it directly influences the perception of both the flavour and quality of a product. The processing of food can cause degradation or loss of natural pigments in the raw materials. In addition, some formulated products, such as soft drinks, confections, ice cream, and snack foods, require the addition of colouring agents. Colorants are often necessary to produce a uniform product from raw materials that vary in colour intensity. Colorants used as food additives are classified as natural or synthetic. Natural colorants are derived from plant, animal, and mineral sources, while synthetic colorants are primarily petroleum-based chemical compounds.

Natural colorants

Most natural colorants are extracts derived from plant tissues. The use of these extracts in the food industry has certain problems associated with it, including the lack of consistent colour intensities, instability upon exposure to light and heat, variability of supply, reactivity with other food components, and addition of secondary flavours and odours. In addition, many are insoluble in water and therefore must be added with an emulsifier in order to achieve an even distribution throughout the food product.

Synthetic colorants

Synthetic colorants are water-soluble and are available commercially as powders, pastes, granules, or solutions. Special preparations called lakes are formulated by treating the colorants with aluminum hydroxide. They contain approximately 10 to 40 percent of the synthetic dye and are insoluble in water and organic solvents. Lakes are ideal for use in dry and oil-based products. The stability of synthetic colorants is affected by light, heat, pH, and reducing agents. A number of dyes have been chemically synthesized and approved for usage in various countries. These colorants are designated according to special numbering systems specific to individual countries. For example, the United States uses FD&C numbers (chemicals approved for use in foods, drugs, and cosmetics), and the European Union (EU) uses E numbers.

All synthetic colorants have undergone extensive toxicological analysis. Brilliant Blue FCF, Indigo Carmine, Fast Green FCF, and Erythrosine are poorly absorbed and show little toxicity. Extremely high concentrations (greater than 10 percent) of Allura Red AC cause psychotoxicity, and Tartrazine induces hypersensitive reactions in some persons. Synthetic colorants are not universally approved in all countries.


The flavour of food results from the stimulation of the chemical senses of taste and smell by specific food molecules. Taste reception is carried out in specialized cells located in the taste buds. The five basic taste sensations—sweet, salty, bitter, sour, and umami—are detected in regions of the tongue, mouth, and throat. Taste cells are specific for certain flavour molecules (e.g., sweeteners).

In addition to the basic tastes, the flavouring molecules in food stimulate specific olfactory (smell) cells in the nasal cavity. These cells can detect more than 10,000 different stimuli, thus fine-tuning the flavour sensation of a food.

A flavour additive is a single chemical or blend of chemicals of natural or synthetic origin that provides all or part of the flavour impact of a particular food. These chemicals are added in order to replace flavour lost in processing and to develop new products. Flavourings are the largest group of food additives, with more than 1,200 compounds available for commercial use. Natural flavourings are derived or extracted from plants, spices, herbs, animals, or microbial fermentations. Artificial flavourings are mixtures of synthetic compounds that may be chemically identical to natural flavourings. Artificial flavourings are often used in food products because of the high cost, lack of availability, or insufficient potency of natural flavourings.

Flavour enhancers are compounds that are added to a food in order to supplement or enhance its own natural flavour. The concept of flavour enhancement originated in Asia, where cooks added seaweed to soup stocks in order to provide a richer flavour to certain foods. The flavour-enhancing component of seaweed was identified as the amino acid L-glutamate, and monosodium glutamate (MSG) became the first flavour enhancer to be used commercially. The rich flavour associated with L-glutamate was called umami.

Other compounds that are used as flavour enhancers include the 5′-ribonucleotides, inosine monophosphate (IMP), guanosine monophosphate (GMP), yeast extract, and hydrolyzed vegetable protein. Flavour enhancers may be used in soups, broths, sauces, gravies, flavouring and spice blends, canned and frozen vegetables, and meats.


Sucrose, or table sugar, is the standard on which the relative sweetness of all other sweeteners is based. Because sucrose provides energy in the form of carbohydrates, it is considered a nutritive sweetener. Other nutritive sweeteners include glucose, fructose, corn syrup, high-fructose corn syrup, and sugar alcohols (e.g., sorbitol, mannitol, and xylitol).

Efforts to chemically synthesize sweeteners began in the late 1800s with the discovery of saccharin. Since then, a number of synthetic compounds have been developed that provide few or no calories or nutrients in the diet and are called nonnutritive sweeteners. These sweeteners have significantly greater sweetening power than sucrose, and therefore a relatively low concentration may be used in food products. In addition to saccharin, the most commonly used nonnutritive sweeteners are cyclamates, aspartame, and acesulfame K.

The sensation of sweetness is transmitted through specific protein molecules, called receptors, located on the surface of specialized taste cells. All sweeteners function by binding to these receptors on the outside of the cells. The increased sweetness of the nonnutritive sweeteners relative to sucrose may be due to either tighter or longer binding of these synthetic compounds to the receptors.

Nonnutritive sweeteners are primarily used for the production of low-calorie products including baked goods, confectioneries, dairy products, desserts, preserves, soft drinks, and tabletop sweeteners. They are also used as a carbohydrate replacement for persons with diabetes mellitus and in chewing gum and candies to minimize the risk of dental caries (i.e., tooth decay). Unlike nutritive sweeteners, nonnutritive sweeteners do not provide viscosity or texture to products, so bulking agents such as polydextrose are often required for manufacture.

Toxicological Testing And Health Concerns

Food additives and their metabolites are subjected to rigorous toxicological analysis prior to their approval for use in the industry. Feeding studies are carried out using animal species (e.g., rats, mice, dogs) in order to determine the possible acute, short-term, and long-term toxic effects of these chemicals. These studies monitor the effects of the compounds on the behaviour, growth, mortality, blood chemistry, organs, reproduction, offspring, and tumour development in the test animals over a 90-day to two-year period. The lowest level of additive producing no toxicological effects is called the no-effect level (NOEL). The NOEL is generally divided by 100 to determine a maximum acceptable daily intake (ADI).

Toxicological analysis of the nonnutritive sweeteners has produced variable results. High concentrations of saccharin and cyclamates in the diets of rats have been shown to induce the development of bladder tumours in the animals. Because of these results, the use of cyclamates has been banned in several countries, including the United States, and the use of saccharin must include a qualifying statement regarding its potential health risks. However, no evidence of human bladder cancer has been reported with the consumption of these sweeteners. Both aspartame and acesulfame K have been deemed to be relatively safe, with no evidence of carcinogenic potential in animal studies.

Leave a Reply

Your email address will not be published. Required fields are marked *